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Abstract: Three-dimensional direct numerical simulations of gravity currents on different bottom slopes are presented in this paper.
After the buoyancy closed in a lock is instantaneously released, the produced gravity currents go through an acceleration phase followed
by a deceleration phase. In the acceleration phase, the tail current connects to and feeds buoyancy into the head for all cases considered here.
The maximum buoyancy contained in the head, reached at the end of the acceleration phase, increases as the bottom slope increases. The
maximum buoyancy in the head never reaches the total released buoyancy, and a significant portion of released heavy fluid is left in the
tail current. In the deceleration phase, the tail current continues to join the head as the gravity currents propagate for lower slope angles
(θ ¼ 0.2, and 4°), but the head disconnects the joining tail current for higher slope angles (θ ¼ 6, 8, and 10°). The gravity current head loses
contained buoyancy less rapidly in the deceleration phase as the bottom slope increases. Structures of the gravity current indicate that the
relative length of the head diminishes as the gravity currents propagate downslope for lower slope angles and remains approximately constant
for higher slope angles. The maximum front velocity increases as the bottom slope increases. In the deceleration phase, the front location–
time relationship follows the thermal theory power law for higher slope angles and for lower slope angles, and the inertial phase power-law
asymptote is observed. DOI: 10.1061/(ASCE)HY.1943-7900.0000716. © 2013 American Society of Civil Engineers.

CE Database subject headings: Currents; Thermal factors; Slopes; Simulation; Three-dimensional models.
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Introduction

Gravity currents, otherwise known as buoyancy or density currents,
are flows driven by a density difference. The density difference
may be due to temperature differentials or dissolved and suspended
materials, e.g., salt and sediments. The majority of works on gravity
currents have focused on a finite buoyancy instantaneously released
on a horizontal boundary, i.e., lock-exchange flows (Simpson 1997;
Shin et al. 2004; La Rocca et al. 2008). Gravity currents down a
slope are less considered in the literature but are also commonly
encountered in geophysical environments and engineering applica-
tions. Readers are referred to Allen (1985), Fannelop (1994), and
Simpson (1997) for more details about gravity currents and a re-
view of the great diversity of possible cases.

Related to the present study, Britter and Linden (1980) con-
sidered continuously maintained density flow down slopes at an-
gles varying from 5 to 90° and reported a steady front velocity for
gravity currents produced from a continuous buoyancy source
when the slope is greater than 0.5°. For gravity currents produced
from a finite, instantaneous buoyancy source, the Laboratory of
Geophysical and Industrial Flows (LEGI) group at the University
of Grenoble in Grenoble, France, and collaborators have per-
formed a series of experiments aimed at modeling powder-snow
avalanches and turbidity currents down the continental slope to the
deep ocean, and in these examples the flow domain is essentially
infinite with a free surface (Hopfinger and Tochon-Danguy 1977;
Beghin et al. 1981; Rastello and Hopfinger 2004). In summary,

their experiments showed that, after released on a slope, gravity
currents first go through an acceleration phase followed by a
deceleration phase. These works differ from full-depth, lock-
exchange experiments in that the initial buoyancy and subsequent
flows occupy a sufficiently small fraction of the flow domain
and the influence of the top boundary is considered negligible.
Therefore, the top boundary was set parallel to the bottom boun-
dary in previous work. For example, the initial height of the heavy
fluid in Beghin et al. (1981) was 16% of the total domain height,
and the height of the produced gravity current head on a 5° slope
therein remained less than 20% of the domain height. In addition,
the thermal theory was developed in that work by Beghin et al.
(1981) following the noted Morton et al. (1956) to describe the
front velocity history and has formed the basis for many sub-
sequent studies (see, for example, the references in Dai 2010).
Recently, Maxworthy and Nokes (2007) reported that for gravity
currents produced from a slender body of initial heavy fluid, with
the long side lying on the slope, the acceleration phase is extended
like a continuous line plume, and they modified the thermal theory
to account for the influence of buoyancy increase on the gravity
current propagation. In our case, the initial heavy fluid that is set
following Beghin et al. (1981) is more compact. As discussed and
estimated in Maxworthy and Nokes (2007), approximately 30%
of the initial heavy fluid in a lock would be available to feed
the gravity current head on a 10° slope, and as such the acceler-
ation phase would be significantly shortened. In the deceleration
phase, Maxworthy (2010) reported that the head began to lose
buoyancy-containing fluid from its rear by detrainment.

The configuration of the problem is sketched in Fig. 1. Here the
density of ambient fluid is taken as ~ρ0 and the density of initial
heavy fluid is ~ρ1, where ð ~ρ1 − ~ρ0Þ= ~ρ0 ≪ 1. After an instantaneous
release of heavy fluid from a lock, the head of the gravity current
forms a self-similar semielliptical shape with a constant height-
to-length aspect ratio κ ¼ ~H= ~L. Based on the thermal theory, the
height and length of the gravity current head are
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~H ¼ 1

2

S2
S1

κ1=2αð ~xþ ~x0Þ; ~L ¼ 1

2

S2
S1

κ−1=2αð ~xþ ~x0Þ ð1Þ

where S1 ¼ π=4 and S2 ¼ ðπ=23=2Þð4κ2 þ 1Þ1=2=κ1=2 are the
shape factors, α is the entrainment coefficient (Ellison and Turner
1959), ~x is the distance from the left wall (x1 ¼ 0) to the mass
center of the head, and ~x0 is the distance measured from the ficti-
tious virtual origin to the left wall. With Boussinesq approxima-
tions, the mass-center velocity of the gravity current head is
derived from the momentum equation as

~U ¼
�
2

3
C

1

~xþ ~x0

�
1 −

�
~x0

~xþ ~x0

�
3
��

1=2
ð2Þ

when the heavy fluid is released from the quiescent initial state.
Here C ¼ ð4S1 ~B sin θÞ=½ð1þ kvÞα2S22�, ~B ¼ ~gð ~ρ − ~ρ0ÞS1 ~H ~L = ~ρ0
is the total buoyancy, and kv ¼ 2k is the added mass coefficient
(Batchelor 1967). With the geometric relation for the gravity
current head, ~xf ¼ ~xþ ~L=2, the front velocity is related to the

mass-center velocity by ~Uf ¼ ½1þ αS2=ð4S1κ1=2Þ� ~U. Although
analytically simple, Eq. (2) outlines the behavior of a gravity cur-
rent down a slope and predicts that the front velocity will increase
as the buoyancy contained in the head and the bottom slope in-
crease since both factors lead to increasing values of C. Following
Beghin et al. (1981), for large values of ~x, i.e., ð ~x= ~x0Þ ≫ 1,

~H ∼ ~xf; ~L ∼ ~xf; ~Uf ∼ ~x−1=2f ð3Þ

Alternatively, Maxworthy (2010) recast the relation between
front location and time in the following form:

ð ~xf þ ~x0Þ ¼ KM
~B1=3
0 ð~tþ ~t0Þ2=3 ð4Þ

where KM = a constant yet to be determined and ~B0 = an exper-
imental setup constant. When ~xf ≫ ~x0 and ~t ≫ ~t0, i.e., when the
gravity current is sufficiently far into the deceleration phase,
the asymptotic velocity-distance relation in Eq. (3) is recovered.
It was also reported in Maxworthy (2010) that the power-law
Eq. (4) is robust even when the conditions ~xf ≫ ~x0 and ~t ≫ ~t0
are not satisfied.

Coincidentally, for planar gravity currents produced from a lock
exchange on a horizontal boundary, Huppert and Simpson (1980)
showed that after the constant-velocity slumping phase, the front
velocity satisfies the relationships

~Uf ∼ ~t−1=3 and ~xf ∼ ~t2=3 ð5Þ

during the inertial phase for full-depth releases; similar results
were also obtained for partial-depth releases (Marino et al. 2005).
Note that the power-law asymptote for the inertial phase is equiv-
alent to the thermal theory prediction provided the gravity current

is sufficiently far from the virtual origin. After the inertial phase
there exists a viscous phase in which the following front velocity
asymptotics were obtained:

~Uf ∼ ~t−5=8 and ~xf ∼ ~t3=8 ð6Þ

A previous numerical study of gravity currents on a 10° slope
was carried out by Dai et al. (2012), and it was shown that the buoy-
ancy contained in the head was at most approximately 58% of the
total released buoyancy, and an upslope propagating tail current
was observed. However, the heavy fluid was set in motion by in-
stantaneously removing all the enclosing walls in Dai et al. (2012),
and as such an upslope propagating current was generated, whereas
in reported experiments, only the front gate was removed and
the released heavy fluid propagated unidirectionally downslope.
To account for the initiation mechanism of gravity currents in ex-
periments and to study how the characteristics of gravity currents
change as the bottom slope increases from 0 to 10°, the problem of
Beghin et al. (1981) was reinvestigated using direct numerical sim-
ulations (DNS), in which all scales of motion were fully resolved
in space and time. While four Reynolds numbers were reported in
Dai et al. (2012), only R ¼ 104 is chosen here because this is suf-
ficiently large for gravity currents in the turbulent flow regimes and
the provided numerical resolution is consistent with the present
authors’ computational resources.

Numerical Formulation

Fig. 1 shows half of the configuration of gravity current simula-
tions. To ensure a reflection condition at the midplane (x1 ¼ 0)
as in experiments and to prevent any upslope propagating currents,
the other half is a symmetric image placed to the left of the con-
figuration shown in Fig. 1. In the figure, the computational domain
of interest is chosen as Lx1 × Lx2 × Lx3 ¼ 12 × 3 × 2 and the buoy-
ancy initially occupies the shaded region of l0 × h0 ¼ 0.4 × 0.32
without momentum. At t ¼ 0, the buoyancy is instantaneously
released and allowed to propagate downstream. Streamwise, span-
wise, and wall-normal directions follow the right-hand rule and are
denoted by x1, x2, and x3, respectively. The channel is tilted so the
gravity vector ~egi makes an angle θ with the wall-normal direction,
x3. Simulations of gravity currents on bed slopes, θ ¼ 0, 2, 4, 6, 8,
10°, are performed in the study. H and L are the height and length
of the gravity current head, and the front location is denoted by xf
measured from the left wall in the figure (x1). The virtual origin,
which is identified through extrapolation to H ¼ 0, is located x0
beyond the wall. The heavy fluid of density ~ρ1 is confined in
the locked region and separated from the light fluid of density
~ρ0. Here we assume that the density difference is small enough
so that Boussinesq approximations can be adopted. The governing
equations, i.e., conservation of mass, momentum, and buoyancy,

~eg

x

h 0

x
x 3

x 1

l0

L

L θ

1

3

L

H

  origin
virtual 

x
0

x
f

Fig. 1. Sketch of gravity current propagating on a sloping boundary
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where the influence of density variations is neglected in the
inertia term but retained only in the buoyancy term, take the
dimensionless form

∂uk
∂xk ¼ 0 ð7Þ

∂ui
∂t þ ∂ðuiukÞ

∂xk ¼ ρegi − ∂p
∂xi þ

1

Re
∂2ui

∂xk∂xk ð8Þ

∂ρ
∂t þ

∂ðρukÞ
∂xk ¼ 1

ReSc
∂2ρ

∂xk∂xk ð9Þ

Here ui = velocity vector; ρ = density; egi = unit vector pointing
in gravity direction; and p = pressure. In the present study the chan-
nel is inclined at an angle θ; therefore, egi ¼ ðsin θ; 0;− cos θÞT . The
variables in Eqs. (7)–(9) are made dimensionless by the channel
half-height, ~h, as the length scale and the buoyancy velocity,

~ub ¼
ffiffiffiffiffiffiffi
~g 0 ~h

q
, as the velocity scale, where the reduced gravity ~g 0 is

~g 0 ¼ ~g
~ρ1 − ~ρ0

~ρ0
ð10Þ

The choice of channel half-height as the length scale here is for
computational purposes (Canuto et al. 1988; Hartel et al. 2000;
Cantero et al. 2007; Dai et al. 2012). As will be explained sub-
sequently, in the wall-normal direction we employ the Chebyshev
expansion, which requires that the computational domain in the
wall-normal direction be between −1 and 1. However, it should be
remarked that ð ~h0~l0Þ1=2 is a relevant and commonly used physical
length scale in the problem. The dimensionless pressure and den-
sity are given by

p ¼ ~p
~ρ0 ~u2b

; ρ ¼ ~ρ − ~ρ0
~ρ1 − ~ρ0

ð11Þ

According to our nondimensionalization scheme, the dimen-
sionless density is in the range 0 ≤ ρ ≤ 1. At t ¼ 0, the heavy fluid
occupies the region of ρ ¼ 1 and the ambient fluid region is rep-
resented by that of ρ ¼ 0. The initial density contrast, ~ρ1 − ~ρ0, only
comes into play via the reduced gravity ~g 0 and is specified implic-
itly via the Reynolds number. The Reynolds number and the
Schmidt number arising from the nondimensionalization of the
equations are defined by

R ¼ ~ub ~h
~ν

; Sc ¼ ~ν
~κ

ð12Þ

respectively, where ~ν represents the kinematic viscosity and ~κ the
diffusivity of the density field. Based on the observation that the
influence of Schmidt number on the flow is weak, we employed
Sc ¼ 1 in all simulations (Hartel et al. 2000; Bonometti and
Balachandar 2008).

In the present investigation the code described in Cortese and
Balachandar (1995) based on the dealiased pseudospectral method
(Canuto et al. 1988) is employed and a detailed validation of
the code for lock-exchange flows is given in Cantero et al.
(2006, 2007). As introduced earlier, the code was modified in
Dai et al. (2012) for gravity currents on a slope, but an upslope
propagating tail current was generated due to the imperfect initia-
tion mechanism. To more accurately model the lock configuration
in experiments, where only one end facing the downstream direc-
tion is instantly open, here we impose a reflection condition at the

streamwise midplane (x1 ¼ 0) such that the heavy fluid in the lock
fully spreads into the channel of length Lx1 . The governing equa-
tions are solved in a rectangular domain 2Lx1 × Lx2 × Lx3 with res-
olution Nx1 × Nx2 × Nx3 . The width of the channel was chosen to
be Lx2 ¼ 3, which is sufficient for spanwise variation, including
several lobe and cleft structures (Hartel et al. 2000). The channel
length in the streamwise direction was chosen to be Lx1 ¼ 12 to
allow for the full development of acceleration and deceleration
phases and comparison with Beghin et al. (1981). To achieve spec-
tral accuracy, periodic boundary conditions are employed in the
streamwise and spanwise directions,

fðx1; x2; x3; tÞ ¼
X
k1;k2

f̂k1;k2ðx3; tÞeiπk1x1=Lx1 ei2πk2x2=Lx2 ð13Þ

where f = discretized variables, namely, the velocity components,
pressure, and density, and f̂ = coefficients of Fourier transforms.
Streamwise periodicity implies that an array of planar gravity
currents, each separated by 2Lx1 initially, is being simulated.
The wavenumbers in the x1- and x2-directions are k1 and k2, respec-
tively, which satisfy

jk1j ≤ Nx1

2
; jk2j ≤ Nx2

2
ð14Þ

In the wall-normal direction, we employ the Chebyshev expan-
sion for f̂ with Gauss-Lobatto quadrature points, which provide
higher resolution near the walls and allow for straightforward
treatment of boundary conditions. Using Gauss-Lobatto quadrature
points also implies that the top boundary is parallel to the bottom
boundary, rather than simply horizontal as a free surface. However,
because the initial heavy fluid is enclosed in a small region, con-
sistent with previous work, the influence of the top boundary on the
gravity currents is assumed to be negligible, as confirmed by the
investigation of Beghin et al. (1981). At the top and bottom boun-
daries, x3 ¼ �1, the no-slip and no-flux conditions are employed
for the velocity and density fields, i.e.,

ui ¼ 0;
∂ρ
∂x3 ¼ 0 at x3 ¼ �1 ð15Þ

To solve the equations in the velocity-pressure formulation, the
diffusion terms are treated implicitly using the Crank-Nicolson
scheme. The convection and buoyancy-forcing terms are treated
explicitly using the low-storage third-order Runge-Kutta scheme
(Williamson 1980). The Arakawa method (Durran 1999), in which
the convective and divergence forms of the nonlinear term are
alternately used, is also employed for the convection term to reduce
the aliasing error. In all simulations, the velocity field was initial-
ized with fluid at rest, i.e., ui ¼ 0 everywhere. The initial density
field is prescribed to be unity in the heavy fluid region and zero in
the light fluid region, with a steep error-function-type transition
between the two values. The initial density field is also seeded with
a minute random disturbance to ensure transition to turbulence
(Cantero et al. 2006). In this paper, we present three-dimensional
DNS at R ¼ 104 and observe the influence of the bottom slope
by choosing θ ¼ 0, 2, 4, 6, 8, and 10°. The Reynolds number
(R ¼ 104) is chosen such that the gravity currents are in the tur-
bulent flow regimes while the provided numerical resolution is
consistent with our computational resources. To fully resolve the
largest and smallest scales of the gravity current motion in the com-
putational domain (2Lx1 × Lx2 × Lx3 ¼ 24 × 3 × 2), the numerical
mesh Nx1 × Nx2 × Nx3 ¼ 840 × 128 × 220 was selected for all
simulations. The chosen spatial resolution is consistent with the
requirement that the grid size be of the order of Oð1=

ffiffiffiffiffiffiffiffiffiffi
RSc

p
Þ
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(Birman et al. 2005, 2007) and follows Dai et al. (2012). The time
step was chosen to produce a Courant number less than 0.5.

Results

Flow Characteristics

When the gravity currents produced from an instantaneous
buoyancy source propagate on inclined boundaries, they exhibit a
structure with a distinct head and a following tail current. For easy
visualization of the gravity current and for an unambiguous mea-
sure of buoyancy, the width-averged density, ρ̄, and the equivalent
height, h̄, are defined as

ρ̄ðx1; x3; tÞ ¼
1

Lx2

Z
Lx2

0

ρðx1; x2; x3; tÞdx2;

h̄ðx1; tÞ ¼
Z

1

−1
ρ̄ðx1; x3; tÞdx3 ð16Þ

respectively (Shin et al. 2004; Marino et al. 2005; Cantero et al.
2007). To illustrate the concept of equivalent height, in fluid col-
umns filled entirely by the light ambient fluid, the equivalent height
is zero; in fluid columns filled entirely by the released heavy fluid,
the equivalent height is Lx3 . The equivalent height provides a
clear measure of the distribution of heavy fluid in the streamwise
direction; however, the equivalent height is distinct from the
height of the gravity current head, H, which is defined using the
width-averaged density ρ̄ (Dai et al. 2012). According to the con-
figuration shown in Fig. 1, the total released buoyancy in the
channel is given byZ

Lx1

0

h̄ðx1; tÞdx1 ¼ h0l0 ∀ t ð17Þ

As an example, the flow field is visualized in Fig. 2 by the
width-averaged density, ρ̄, for the gravity current propagating on
a 10° slope at R ¼ 104. The startup roller forming as the heavy
fluid slumps at the initial stage of gravity current propagation is
observed in Fig. 2(a). Fig. 3 shows the evolutions of the equivalent
height for gravity currents on different slopes. Moreover, the grav-
ity current head not only moves downslope but also spreads simu-
taneously, as indicated by the decreasing equivalent height. Using
the results in Fig. 3, the front location, xf , can be identified without
ambiguity. Here the front of the current is taken to be at the location
given by h̄ ¼ 0.001, and due to the sharpness of the density gra-
dient, the location of the front is insensitive to the actual value of h̄
chosen to identify it.

Of particular interest here is the growth of the height and length
of the gravity current head. To define the length and height of the
head, we take advantage of the width-averaged density, illustrated
in Fig. 2(f), in that the semielliptical head is marked by a height, H,
and length, L, and is separated from the tail current by a local in-
dentation. As shown in Fig. 4, during the initial developing stage of
gravity current motion, the height and length of the gravity current
head both increase linearly with downslope distance. Note that the
rate of size increase depends on the slope angle, where the increase
rate in the height is more sensitive than the length. At θ ¼ 10°, the
approximate relationshipsH∶0.07xf and L∶0.32xf are in agreement
with reported experimental observations (Beghin et al. 1981). How-
ever, the height of the head ceases to increase linearly as in the
initial stage at xf∶2.5 and grows less rapidly with distinct mild un-
dulation. By extrapolating the gravity current height and distance
relationship in Fig. 4(a), the virtual origin can be identified for the
deceleration phase at higher slope angles (θ ¼ 6, 8, and 10°), but

Fig. 2. Flow evolutions visualized by width-averaged density, ρ̄, for
gravity current propagating on a 10° slope at R ¼ 104; (a)–(f) are
chosen at t ¼ 5, 10, 15, 20, 25, 30 dimensionless time units

(a)
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(b)
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 0
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(e)
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Fig. 3. Equivalent heights of gravity currents at R ¼ 104 produced
from a finite buoyancy source on different slope angles: (a) θ ¼ 0°;
(b) θ ¼ 2°; (c) θ ¼ 4°; (d) θ ¼ 6°; (e) θ ¼ 8°; (f) θ ¼ 10°; time interval
between consecutive instances in each frame is five dimensionless
time units
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for lower slope angles (θ ¼ 0, 2, and 4°) finding the virtual origin
becomes infeasible because the current height is essentailly con-
stant or decreasing in the deceleration phase.

Fig. 5 shows the gravity current structures on a stretched coor-
dinate normalized by xf. Note that for lower slope angles (θ ¼ 0, 2,
and 4°), the head is constantly connected with the tail current and
the relative length of the head, L=xf , diminishes as the gravity
current propagates downslope; for higher slope angles (θ ¼ 6, 8,
and 10°), the head is distinct from the tail, and after the head is
clearly formed (at t∶5), the relative length of the head remains
approximately constant (L=xf ≈ 0.35). Fig. 5 also shows that the
distribution of heavy fluid contained within the head moves toward
the downslope side as the gravity current propagates.

Fig. 6 shows the aspect ratio, k, versus the downslope distance.
Following Morton et al. (1956), the self-similarity assumption for
the semielliptical front in thermal theory requires the aspect ratio to
be a constant. However, detailed inspection shows that the aspect
ratio steadily decreases as the gravity current propagates down-
slope, e.g., from approximately 0.4 when the semielliptical front
develops to less than 0.2 after xf ¼ 6 for θ ¼ 10°, for all the bottom
slopes considered in the study.

Front Velocity

The front velocity, uf, can be obtained from the time dependence of
the front location xf as

uf ¼ dxf
dt

ð18Þ

Fig. 7(a) first shows the front location versus time for all the
cases considered here. Detailed relationships for the initial accel-
eration and deceleration phases are shown in Figs. 7(b and c),
respectively. It is obvious from Figs. 7(a and b) that the gravity
currents propagate at a speed that increases with the bottom slope.
To clarify the influence of no-slip conditions at the top boundary, a
simulation with a free-slip top for θ ¼ 10° was run and included in
Fig. 7. It is observed that except for the later stage in the deceler-
ation phase (t > 15), the propagation of gravity currents with a
free-slip top is consistent with that with a no-slip top boundary
in the acceleration phase and early deceleration phase. Note that
in Britter and Linden (1980), the front velocity is found to be a
constant proportional to the cube root of the buoyancy flux and
almost independent of the slope provided the slope angle is greater
than 0.5°. The is because a balance between the continuously sup-
plied buoyancy flux and entrainment of ambient fluid is struck in

Britter and Linden (1980), while in the present study, the gravity
currents evolve into the deceleration phase due to the finite volume
of released buoyancy. Fig. 7(c), plotted on a log-log scale, indicates
that xf∶t2=3 reasonably describes the relationship between the front
location and time in the deceleration phase for lower slope angles
(θ ¼ 0, 2, and 4°), when finding the virtual origin becomes infea-
sible. Note that for lock-exchange flows, xf∶t2=3 indicates the
presence of the inertial phase, and a departure from the xf∶t2=3
asymptote indicates a transition to a viscous phase (Huppert and
Simpson 1980).

For the long-term front location and time relationship at higher
slope angles (θ ¼ 6, 8, 10°), we replot the data in Fig. 7(a) using
ðxf þ x0Þ3=2 against t and find the best fit equations in the decel-
eration phase in the power-law form Eq. (6), where x0 is identified
by extrapolating the height versus distance relationship in the de-
celeration phase and t0 by extrapolating ðxf þ x0Þ3=2 versus t. It is
observed that for higher slope angles, the relationship between
front location and time follows the thermal theory power law in
the deceleration phase, as shown in Fig. 8 and the inserted fitting
equations. Although the conditions xf ≫ x0 and t ≫ t0 are not
really satisfied, it is observed here that the power law is still very
robust and insensitive to the location of virtual origin when the
gravity current is not sufficiently far into the deceleration phase,
as reported by Maxworthy (2010). With the scaling given in the
section entitled “Numerical Formulation,” the dimensionless total
buoyancy in our formulation is B0 ¼ 0.128, and consequently the
determined constant KM is in the range 2.91 < KM < 2.98, where
the magnitude is in agreement with Maxworthy (2010). In addition,
as seen in the inserted equations, KM increases slightly as the
bottom slope increases, which indicates that more buoyancy accu-
mulates in the front as the bottom slope increases. This will be
discussed in the following section.

Fig. 9(a) shows the front velocity history, with a blown-up
view for the deceleration phase in Fig. 9(b). The maximum front
velocity, occurring at approximately t ¼ 3∶4, appears to increase
with the bottom slope. The relationship between the front velocity
and time in Fig. 9(b), on a log-log scale, also shows that the
asymptote, uf∶t−1=3, is a good approximation for the velocity–
time relationship for gravity currents on inclined boundaries.
The episodic increase in front velocity in the deceleration phase
is due to the vortex rollup, during which process the potential
energy is converted to kinetic energy temporarily when the center
of gravity is lowered (Cantero et al. 2007; Dai et al. 2012). Such
an observation applies to all slopes considered here and has been
reported to be more amplified in two-dimensional simulations.
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consistent with reported experimental observations for θ ¼ 10° in Beghin et al. (1981)
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For θ ¼ 0°, the transition from uf∶t−1=3 to uf∶t−5=8 indicates the
presence of a viscous phase following the inertial phase in lock-
exchange flows. Also note that for gravity currents produced from
a finite, instantaneous buoyancy source propagating on a slope,
the motion is driven by the downslope gravitational force and re-
tarded principally by the entrainment, and the deceleration phase
follows the acceleration phase without the presence of a slumping
phase, in which the front velocity remains constant. While it may
seem that the power-law asymptote describes the front velocity
history for all slope angles, it should be remembered that the
same velocity asymptote is also implied by the thermal theory
as the gravity current is sufficiently far from the virtual origin.
Based on the fact that the gravity current has similar structures for
lower slope angles (θ ¼ 0, 2, and 4°), as shown in Fig. 4, the
consistency between the velocity relation and the power-law
asymptote for the lower slope angles is more appropriately ad-
dressed by the applicability of the inertial phase asymptote of
gravity currents in lock-exchange flows (Huppert and Simpson
1980; Marino et al. 2005).
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slope distance, xf; dashed line: κ ¼ 0.28 as approximated in Beghin
et al. (1981) for gravity current on a 10° slope; symbols: plus symbol,
θ ¼ 0°; x-shaped symbol, θ ¼ 2°; asterisk, θ ¼ 4°; square, θ ¼ 6°; dia-
mond, θ ¼ 8°; triangle, θ ¼ 10°; the aspect ratio of the semielliptical
head decreases as gravity current moves downslope
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Driving Buoyancy in Head

Now focus will turn to the buoyancy contained in the head, which is
understood as the driving force in a gravity current motion. Here
the effective buoyancy, Bf, is defined, i.e., the buoyancy contained
in the head as

Bf ¼
Z
L
h̄ðx1; tÞdx1 ð19Þ

where the subscript L in the integral denotes that the integration is
done exclusively in the head region of extent L. If the head were to
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viscous phase in lock-exchange flows (Huppert and Simpson 1980); symbols: plus symbol, θ ¼ 0°; x-shaped symbol, θ ¼ 2°; asterisk, θ ¼ 4°; square,
θ ¼ 6°; diamond, θ ¼ 8°; triangle, θ ¼ 10°; dashed line in (a) = simulation with free-slip top boundary on a θ ¼ 10° slope
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1=3
0 ðtþ t0Þ2=3, which describes the long-term front location and time relationship based on thermal theory
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contain the total buoyancy, then the effective buoyancy would be
identical to the initial buoyancy, i.e., Bf ¼ B0.

Fig. 10(a) shows the effective buoyancy, normalized by the ini-
tial buoyancy B0 ¼ 0.128, versus the downslope distance, compar-
ing it with the velocity–distance relationship in Fig. 10(b). When
the head is developing as gravity currents propagate downslope, the
effective buoyancy increases with downslope distance. Since the
equivalent height provides an unambiguous measure of the distri-
bution of heavy fluid in the streamwise direction, it is observed that
the buoyancy in the head is fed from behind through the joining tail
current, as illustrated in Figs. 4(a–f) prior to t∶5. Furthermore, the
maximum effective buoyancy also depends on the bottom slope,
from 63% of the initial buoyancy at θ ¼ 0° to 75% at θ ¼ 10°,
which indicates that as the bottom slope increases, more heavy fluid
tends to accumulate in the head for the slope angles considered
here. As shown in Fig. 10(b), in general the effective buoyancy
increases (decreases) as the gravity currents are in the acceleration
(deceleration) phase, but the maximum front velocity occurs
slightly after the maximum effective buoyancy is reached. As de-
scribed by the linear momentum, the front velocity tends to increase
as the driving mechanisms, effective buoyancy and component of
gravity in the streamwise direction, intensify. Note that in all the
cases considered, the maximum effective buoyancy never reached
the total buoyancy, which indicates that a significant portion of
heavy fluid was retained in the tail current from the release of

gravity currents and never made it to the current head, e.g., at
θ ¼ 10° the head contains at most 75% of the total buoyancy, when
the deceleration phase begins.

In the deceleration phase, as shown in Figs. 10(a and b), the
effective buoyancy decreases as the gravity currents propagate.
Further, the rate of decrease in the effective buoyancy depends
on the bottom slope. The head loses buoyancy-containing fluid
less rapidly as the bottom slope increases. For lower slope angles
(θ ¼ 0, 2, and 4°), the head and tail of the gravity currents are con-
nected, but the relative length of the head diminishes as the gravity
currents propagate. As such, the buoyancy contained in the head
region decreases, leaving heavy fluid behind in the tail currents.
For higher slope angles (θ ¼ 6, 8, and 10°), as shown in Fig. 2, the
head separates from the tail of gravity currents, of which the relative
length of the head is approximately constant and the loss of buoy-
ancy as in the lower angle cases is not observed.

Conclusions

This paper presented three-dimensional DNSs of gravity currents
on different slopes and investigated the influence of bottom slopes
on gravity current dynamics. To more accurately model the initia-
tion mechanism of gravity currents in experiments, this study
implemented a reflection condition at the midplane such that the
released heavy fluid propagated unidirectionally downslope.

As a first approximation in thermal theory, the gravity current
head was assumed to maintain a semielliptical shape with a
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constant height-to-length aspect ratio. It was observed that the as-
pect ratio could decrease by a factor of over two as the gravity cur-
rents propagated. The constant aspect ratio assumption was true
only in an average sense.

The maximum front velocity and the maximum effective buoy-
ancy contained in the front both increased as the bottom slope in-
creased. Moreover, the maximum effective buoyancy never reached
the total buoyancy, indicating that a significant portion of heavy
fluid was constantly kept in the tail current. The maximum effective
buoyancy in the head reached approximately 75% of the total re-
leased buoyancy for θ ¼ 10°. In the acceleration phase, the tail cur-
rent connected to and fed buoyancy into the head for all the cases
considered in the study. In the deceleration phase, for lower slope
angles (θ ¼ 0, 2, and 4°), the tail current continued to join the head
and the relative length of the head diminished as the gravity current
propagated downslope. For higher slope angles (θ ¼ 6, 8, and 10°),
the head disconnected the joining tail current in the deceleration
phase and the relative length of the head remained approximately
constant. The rate at which gravity current head lost buoyancy-
containing fluid also depended on the bottom slope. Effective
buoyancy in the head decreased more rapidly for the lower slope
angles than for the higher ones. The structures of gravity currents
also indicated in the deceleration phase that the buoyancy was left
in the tail current for lower slope angles and the tail disconnected
the front for higher slope angles, which made it possible to maintain
a higher effective buoyancy. It was also found that the front location
and time relationship in the deceleration phase followed the ther-
mal theory power law for higher slope angles and for lower slope
angles, and a similar power-law asymptote of the inertial phase of
gravity currents was observed.

In addition to the preceding observations, the findings in this
study also suggest that the slope angle determines the stucture of
gravity currents generated from instantaneous sources on a slope
and the existence of a threshold slope angle beyond which the front
will disconnect the tail current and propagate downslope by itself.
Regardless of whether or not an overhaul of the existing thermal
theory is warranted, it is clear from the study that the influence
of the bottom slope should be carefully evaluated when the thermal
theory is in use for the description of gravity currents on sloping
boundaries.
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